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ABSTRACT

We study the dual problem corresponding to a linear program in which

the stochastic objective function is replaced by its expected utility, and

discuss its relevance as a penalty method to a stochastically constrained

dual linear program.

KEY WORDS

Stochastic Linear Programming

Expected Utility

_ Penalty Methods
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1. INTRODUCTION
Consider a linear programming problem with a stochastic cbjective function:

(So-p) sup{ctx : Ax < Db, x> 0}

where x € R" is the decision vector, A is a given fixed matrix of size m x n ,
b - is a given fixed vector in R° , and ¢ 1is a random vector with a known distribu-
tion functicn Fc(-) , and mean E(c) =y € Rn .

A fundamerntal decision-theoretic approach to solve problem {(SO-P) is the well

known expected utility principle (see for example [9], [5])which reduces problem (SO-P)

to the deterministic nonlinear programming problem:
t
(EU-P) Sup{BEu{c x) : Ax <b, x > 0}

where E denotes the mathematical expectation with respect to the random vector ¢ ,
and u is the decision maker utility function, which is strictly increasing and con-
cave. . The latter property reflects a risk-aversion attitude. (See e.g. the papers
of Arrow [1] and Pratt [6]). Under these conditions problem (EU-P) becomes a concave
nonlinear programming problem.

The purpose of this paper is to investigate the dual problem of (EU-P) and to

discuss its relations to the dual linear program of (SO-P):
. < t
(sC-D) min{b”y : A’y > ¢ , y > 0} .

which is a linear program with stochastic constraints. In fact we find it appropriate

to deal, instead of problem (EU-P), with an eqguivalent problem
-1 t
(CE-P)  sup{u "Eu(c’X) : Ax <b, x > 0}
where u‘l is the inverse of u . Note that for a random variable T

c() a u lEa(m)
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CAlY is the so-colled (_:i'_r_t_a_ig_t_y___g.q_g_i.va]ﬁ_r_ﬂ_._ of T: it is the sure amount which lcaves the
(i decision maker indifferent to a gamble yielding T, since
o u(C(T) = Eu(T).
o
) ]
- There are few reasons to prefer the formulation (CE-P) to (EU-P):
\!'.
" .
::t (1) In the deterministic case. (c being a degenerate random vector) problem (CE-P)
4 . :
}r‘ reduces exactly to the original problem (SO-P), and so the linear structure
\ of it (and its dual) are reccvered.
iﬁ (ii) According to the Von-Neumann-Morgenstern theory [8], the utility function
j}_ is unique up to a monotone increasing affine transformation. If the (EU-P)
. formulation is used, the dual problem will depend on the particular choice
] of u . This is not the case with the (CE-P) formulation since C(T) is
;:j invariant to affine transformation in u.
t:ﬁ There is however some difficulty associated with the objective function
\ t 1l t
N V(x) = C{c x) = u "Eu(c x)
Y
'l.\c
;i of (CE-P); since u = is convex, it is not quaranteed that V(x) is a concave func~
: tion. We show however, in the next section, that for a large class of utility func-
-\ I3 . . » 3 s .
:}? tions, including the important class of HARA utilities (see [2], (3], (5], [9]) V(x)
_}“ is concave regardless of the distribution of the random vector c .
N Properties of the dual problem of (CE-P) are derived in section 3.
=
. Section 4 outlines the general approach to treat the linear program with
R . .
) stochastic constraints (SC-D). Approximations are given in section 5.
9%
LR
T&
~<’ 2. CONCAVITY OF THE CERTAINTY EQUIVALENCE FUNCTIONAL
dy :
o We assume now and henceforth in this paper that
A
‘:{ (1) The random vector ¢ = (cl,cz,...,cn) is non-degenerate, i.e. ¥x # 0
. t .
A:J € X 1s not a degenerate univariate random variable,
o
.. t
e (ii) E(cx) <+ oV x € R"
N
NS
2
a7~
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We denote by [gk,sk] the support of the random variable, by My its mean and by

ok its standard deviation. Let U be the class of twice differentiable

corcave utility functions with u' > 0 and u" < 0.

PP PPy

. \ . -1 . cL .
For a given u € {J , the inverse function u exists, and it is a strictly mono-

tone increasing convex function. Thus problem. (EU-P) can be transformed into an equi-

valent one:

e aaa o .

(CE-P) sup{V(x) 4 u-lEu(ch) : Ax <b, x>0}

Problem (CE-P) is called the certainty equivalent problem.

Note that V(x) is a convex increasing transformation (u-l) of a concave function
Eu(ctx), thus in general V(-) 1is not necessarily a concave function. To be able to
use the powerful duality theory of convex programming, it is then of major importance
to study conditions under which V(x) is concave.

The next result furnish a complete answer to this question. Surprisingly, the
concavity of V(for arbitrary distribution of the randem vectox c¢) is fully charac-

terized in term of the so-called Arrow-Pratt local risk aversicon indicator:

u" (t)

r(t) & - s (2.1)

Theorem 2.1. Let u be a utility function in u . Then the function:

Vvix) = u-lEu(ch)

is concave for any random vector ¢ if and only if rtt) (risk tolerance indi-

cator) is concave.

Proof: (The details will appear elsewhere in a future paper and thus are omitted).

[outline}: (i) The concavity of V is established by showing that it satisfies the

gradient inequality (see [7]). Denoting by .@(t) 4 u-l(t), and using

the fact that ¢' > 0 , the gradient inequality here is:

g ."‘f.-r .- R AR




n )
- -

.' v € Rn ‘DEU(CTY) - (DE.u(CTx) < E[ CT(!-X) ] (2 2)

. X,y i 1 T = .

g ©* (Eulctx)) w'[u(ch)]

(ii) Given u € {§ we define h : R + R by

(L)) - 0(t,)

o>

. 1 :
and show that h is a convex function if and only if o °

Py
.
e

X9 concave.

‘.'. t

:j (iii) Applying Jensen inequality to h(tl,tz) with tl = u(c’y) and
':ﬂ : tz = u(ctx) we get the inequality (2.2),

\ o

_:j ) >77ﬁéh;}k 2.1. The two parameter class of utility functions called hyperbolic absolute
{ risk aversion (HARA), characterized by r(t) = —5%13 » which is widely
'j used in economics ([2], [5], [9]) satisfies trivially the condition that
1

:f (0 is concave.

. The HARA family consists of the following utilities (defined for t > - b/a)
.

% e t/P if a=0,b#0

- u(t) = £ log(b+t) if a=1

(atsb) B2y ax0,ax1
Z;: A utility function satisfying the condition that 1/r(t) is concave will be termed
1 ﬁ .

A a CRT-utility (concave risk tolerance).

:‘ 3. THE DUAL PROBLEM: AN INDUCED u-PENALTY

':: The dual problem of

L]

- A -1 t

- (CE-P) sup{V(x) = u "Eu(c X) : &x < b , x > 0}
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is derived via Lagrangian duality. We assume that u is a CRT-utility so (CE-P) is

. . . n mn
a concave program. -The Lagrangian for problem (CE-P) is the function L:R+ x R+ + R

with values:
Lix,y) = V(x) + y" (b-ax) (3.1)
The dual objective function is defined by:
Dly) = sup{Vix) + y©(b-ax)} (3.2)

xio

and thus the dual problem for (CE-P) is given by:

(CE-D)  infly'b + sup{V(x) ~ ySax}} (3.3)
y>0 x>0 :
Let
A t
P ly) = sup{V(x) - y Ax} (3.4)
x>0 ’

Then problem (CE-D) becomes:

(CE-D)  infly®b + P (y)) A (3.5)
y>0

. The first term, ytb is just the objective functicn of the dual problem of (SO-P):

(sC-D) inf{bty : Aty > ¢} (3.6)
¥20

We show below that the second term, Pu(y) plays the role’ of a penalty function
for the stochastic constraints in (SC-D), Pu will be called accordingly u-penalty.

Theorem 3.1. The u-penalty function (3.5) is convex and satisfies:

() e y) =0 if Ay (3.7)

.. , t
(i) P (y) >0 if ATy i u (3.8)

........ A O e T S N T S
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(1)

(ii)

Proof: As a pointwise supremum of affine functions, Pu(y) is convex.

Let O(y;x) é Vi(x) - ytAx then

P (y) = sup Q(y:ix) > Q(y;0) =0 (3.9)
u x>0

- t
u 1Eu(ctx) < ¥ x , vhere

It

since u € U , by Jensen inequality v(x)

equality holds only for x = 0 , and so
4

P, (¥) = sup Q(yix) < sup xt(u-Aty) (3.10)
x>0

Now if A’y > 1, the inequality (3.10) shows that P (y) < O which
together with (3.9) proves (3.7).

Assume that for some k(k=1l,...,n), Atky < uk

where Aﬁ is the k~th row of A.

Let o (yix) 4 Q¥i0,0,.0u X, ,...0) = Vix) - x AT

k x* kY

d T
Then we have Qk(y,O) =0 and —-—— Qk(y,O) = W Aky >0 .

dxk
Hence there exists Xy > 0 such that:
Qk(y;xk) > Qk(y;O) = 0 (3.11)
: . >

Noting that Pu(y) =  sup Qk(y;xk) (3.12)

n

>0

R 3xk_

and using (3.11), it follows that Pu(y) > 0.
o




The theorem demonstrates that Pu(y) penalizes solutions of (SC-D) which are not

feasible in the mean.

We say that Yy is less feasible then Yy for the k-th constraint (in the mean)

if:
t t
> .1
Ak Y, Ak Y, (3.13)
and we write it yl)b Y, -

The next result shows other desirable properties of the u-penalty. For the k-th

constraint we define:
k t 3
P (y) = sup{v(x ) - x Ay} (3.14)
u k kK 'k

xkzo

Theorem 3.2 The u-penalty function satisfies

k
(1) if oy, > y, then pﬁ (y)) > B (y) (3.15)

(ii) if for some k: A; y<c_ then ? (y) == (3.16)

Proof:

(i) For ¥, > y2 we have by (3.13):

- U —-—
Vig) = X p ¥y > Vi) - xR Y
and then using (3.14) the inequality (3.15) holds.

{ii) Let Al y <c . By (3.12) we have:
A Sk

- []
Pu(y) > sup{v (x,) xkAKy} (3.17)
x,. >0 :
K=

since u is increasing and ck > ck , (3,17) implies:
< =
oo’
:;5 P (y) > sup{u-lEu(c X ) - x Ty} = sup{ (¢, - ATy)x } (3.18)
o u - 0 =Kk kAk <k "k*'7k
‘: xkz xk_>_0

and hence (3.16) follows.

Tt T R T
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Theorem 3.2 demonstrates that the u-penalty is monotone in the sense defined

, S 7, -

S in (3.13) 1
Y
- {
}Q The second property (3.16) shows that the u-penalty automatically excludes )
.
solutions which are not feasible for (SC-D) in probability 1, since for those ) i
. - P = w'
S RO
o :
NS ]
t.-‘ 4. LINEAR PROGRAMMING WITH S.‘J‘C‘CHAS'I‘]’C_C‘.ONSTRAINTS: A GENERAL APPROACH 1
\ " In this section we use the pfcperties of the u-penalty studied previously . out- ?
“
{f line a general approach for linear programming prcklem with stochastic constra c©s: ]
-‘:_ 14
% L
o8 g
A\l t 1
W int y b
- {(sC) AYy > ¢ k=1,...,n ]
o k® - "k 4
.n:‘ §
o y2>0 b
X o
(
N Suppose that the decision-maker accepts a solution y as being "feasible" for the R
$f constraint Aiy > ) if Aty is "large enough", and rejects solutions y for which K

:Q Aty is "tco small", i.e. he can choose two positive numbers kl, k2 such that:
. . . t (*)
. y is feasible if Aky >u t klck
!
- y is infeasible if Ai <y - kzok
\J
.{- all other solutions , i.e. y's such that: p
v ]
:i H, - k.0 < Aty <y + k.o i
- k 2" -k k 1k 3
ng 1
) B
:; are "semi-feasible".
2, s 3
?; (*) If "Feasibility" is modeled by chance constraint [4], i.e. Pr(Aky > ck) > @, g
. -1 - o ) N - k
é then kl = Fz (ak) where Fz is the distribution function of the random variable
: c, u k k i
S k_ k .
> z, = 5 , and a € [0,1) are prescribed probabilities levels. -
X k -
4 K
’ 1
X

'YX
»~
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n We will now build a penalty function Pﬁ (y) for the k-th constraint of (SC) which
N will reflect the above subjective attitude for the decision-maker.
55; Let u be a CRT-utility. For fixed k define:
R o
M . k
. : = (k,+k .
m % T gty Mk (4.1)
R Ok y
.': Y = - +k . (4 .2
D Bk My (klc_:k 2uk) T -c
- k =k
and let ci be the random variable:
* =
%k T %Skt B
The venalty function is given by;
K, . -1 t
= * -
P (y) = sup {u Bulcgx,) - x Ay} (4.3)
x >0
k_
The coefficients ak’Bk were chosen so that:
*) = +
EleR) = e + k9,
L - -
Sk T Mk T k%
hence by Theorem 3.1 and Theorem 3.2 (ii) we have:
, t
f > + ) . ‘
0 i Aky 2 uk klok (4.4) !
Pk()“ © if At<u—ko (4.5)
ulY kY © Mx T %% "
positive otherwise (4.6)

Thus semi-feasible solutions cause a positive, but finite penalty. Moreover, by

Theorem 3.2 (i), the more they violate feasibility, the more they are penalized. Thuc,




T LIy - Y ——— e — g — ™ ~
n'.'.‘-'."-'.'.'-‘-—".'-‘.".-.'.'.'-‘.".‘-\ MEAC A S hat e
3 S X LT e e T . e .

10

the approach we advocate for treating the stochastic linear program (SC) is to use the

surrogate deterministic program (P):

n
(®) inf{y% + I Pt(y)} (4.7)
y>0 k=1

In comparison with problem (CE-D) in (3.5), we use here an additive penalty
(sum of peralties for individual constraints) rather than a joint constraints penalty.
The additive form is clearly advantageous from the computational viewpoint. It is
applicable whenever the decision maker can treat the constraints individually. However

there is one choice of the utility function under which the joint constraints penalty
is additive:

Theorem 4.1. Let u be an exponential utility function:
ult) =a-be P (p>0., b>0 , a€R)

If the random variables Cir Coreves cn are independents then:

n

k
Py) = T P (y)
k=1 Y
k -C. X
where here: P (y) =p * sup{-log E(e k k) - x A;Y}
x, >0 k
k-

Proof: The result follows immediately from the fact that in the casc of exponential

utility the certainty equivalent, in terms of which P is defined, is additive.

u
(See, [2]), Theorem 4). a
o We close this section by a simple illustrative example. Consider the one dimen-
Lo
o sional inventory problem:
)
-
o (sc) min{hy : y >4 , y > 0}

':'.l
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where h is the unit holding cost and d ‘is the demand. Assume that 4 " exp(d} with

mean = % and 0 = %-(A > 0). Let ult) =1 - e-t/p(p>0); i.e. the rick-avcreion

indicator is r(t) = %-. Then by (4.3) the penalty function is:

- - . y-8
Pu(y)-— sup{-p log ( 2 )}

sz A+x

where here, by (4.1) - (4.2) : a = kl + k2 ; B = u(l-ko).

By simple calculﬁs we obtain:
(o . if y > (L+k))u

kl + k2 y-u (k2+1)

+
y+p(k2-l) p(kl + kz)

B ) = { p{log u }AE w(l-k,)<y<u(i+ky)

i + if y < u(l-kz)

Note that p plays here thé"role ofda pe;;ig;;paramgier. éubsigiﬁtiﬂg“?u in (4.7)

and solving problem (P) we obtain

kl + k2

h
1+ u(kl+k2)5

y* = p(l-kz) +u

‘The optimal inventory y* is a monotone decreasing function of both the holding
cost h and the risk-aversion 1/p. If either h = 0 or 1/p + O (risk neutrality)
then y* equals to the highest value u(1+k1) while if n > = or 1/p > = (extreme

risk aversion) y* equals to lowest value u(l-kz).

5. MEAN VARIANCE APPROXIMATIONS

in this section we derive a quad!atic approximation for the u-penalty function
P (y) .
u

Denote the mean vector of ¢ by u , and by V its variance-covariance matrix

(positive definite).




It can be shown by direct differentiation of the certainty equivalent functional

.vﬁk).é u-lEu(ctx)
that:
v(0) =0
VW(0) =y
2 -y v . A _u"(0)
vev(0) rO& with r a7 (0) >0

Using this in (3.4) we obtain:

Proposition 5.1. A second order approximation of - Pu(y) is:

~ tat 1 t
= (A - - =
Pu(y) sup{x ‘By-y) 7 L% vx} (5.1)

x>0
S o

a

Thus the approximate u-penalty Pu(y) is given in term of a cecncave quadratic program. A
direct compution shows that the approximation is exact for the case of exponential util-
ity and c¢ being jointly normal.

For additive penalties, even a more explicit approximation is possible:

- n
Proposition 5.2. A second order approximation Pu(y) of Pu(y) = I Pt(y) is:
k=1
n

- 1 -~ 1 T 2

P(y)=-—"— ¥ —={(u, - Ay ] . (5.2)

u 2r k=1 Ok‘ k k" +
where a = max(0,a) .
Proof: We have to.show that:

k T

P (y) =- (e, -ay 12 (5.3)

u 2r 02 k k' +

o7k
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which by simple calculus gives (5.3).

13

Now from Proposition 5.1 we have for the k-th constraint:

- r 02 x2}

k
P =
u(y) ok 'k

t
sup {xk(uk—Aky)
xkzo

REFERENCES

{1 Arrow, K.J3.: Essays on the Theory of Risk-bearing, Markham Publishing, Chicago,
1975.

{2] Bamberg, G. and Spremann, K.: "Implications of constant risk aversion", Zeit.
fur Operations Research, 25, 1981, pp. 205-224. -

[3] Cass, D. and Stiglitz, J.: "The structure of investor preferences and asset
returns and separability in portfolio allocation: A contribution to the pure
theory of mutual funds". J. Eco. Th., 2, 1970, pp. 122-160.

[4] Charnes, A. and Cooper, W.W.: "Chance constraincd programming®, Manag.Sci., 5,
1959, rp. 73-79. -

[5] Hamnond, J.S.: "Simplifying the choice between uncertain prospects where prefer-
ence is non-linear", Manag.Sci., 20, 1974, pp. 1047-1072.

[6] pPratt, J.W.: "“Risk aversion in the small and in the large", Econometrica, 32,
1964, pp. 122-136. -

[7] Roberts, A.W., Varberg, D.E., Convex Functicns, Academic Press, New York, 1973.

{8) von Neumann, J. and Morgenstern, O.: Theory of Games and Ecorcmic Behavicr, 2nd
ed., Princeton University Press, Princeton, i{.J., 1947.

[9] wilson, R.:: "The theory of syndicates", Fconometrica, 36, 1968, pp. 119-132.

AR IL L T ‘~_-.u~-. e Va4t e e e LIPS
> LU SR RO AR O TR IRES

"Q\N‘




. ™ T e LW e v - T w t
AT R SR g .‘-_".‘_ il ?."B'__T‘_'".V".._' .".?"...W‘ Sl Sildun MERC AR ._'ir. 7 ’~-"‘ A "r_'!_w.v.v‘vg‘\.'.\

Unclassified
SECURITY CLASSIFICATION OF THIS PAGE (When Dats Entered)

.
o'
.,

e B o

READ INSTRUCTIONS

X REPORT DOCUMENTATION PAGE BEF o R TIONS &M
‘:-'. 1. REPORYT NUMBER 2. GOVY ACCESSION NO.{ 3 RECIPIENT'S CATALOG NUMBER
CCS 478 D -4 393

4. TITLE (and Subtitle) 5. TYPE OF REPORT & PERIOD COVERED ‘

The Duality Between Expected Utility and
Penalty in Stochastic Linear Programming [& PERFORMING ORG. REPORT NUMBER

8. CONTRACT OR GRANT NUMBER(»)

N0001481-C-0236

7. AUTHOR(s)

A. Ben-Tal, M. Teboulle

9. PERFORMING ORGANIZATION NAME AND ADDRESS 10. PROGRAM ELEMENT, PROJECT, TASK
AREA & WORK UNIT NUMBERS

Center for Cybernetic Studies
The University of Texas at Austin
Austin, Texas 78712

11. CONTROLLING OFFICE NAME AND ADDRESS 12. REPORT DATE
Office of Naval Research (Code 434) December 1983
Washington, D.C. 13. NUMBER OF PAGES

15
mamm?v NAME & ADORESS(I! dilfarent from Controlling Otfice) | 18. SECURITY CL ASS. (of thie report)
Unclassified

*d

15a. DECL ASSIFICATION/ DOWNGRADING
SCHEDULE

Y T
16. DISTRIBUTION STATEMENT (of this Report)

This document has been approved for public release and sale; its
distribution is unlimited.

17. DISTRIBUTION STATEMENT (of the abetract entered in Block 20, if different from Report)

18. SUPPLEMENTARY NOTES

19. KEY WORDS (Continue on reverse side If necessary and identity by block number)

Stochastic linear programming, expected utility, penalty methods

[] ; .

-.‘ [STIRIN APV B

:_<. 20. ABSTRACT (Continue on reverse side if necessary and identify by block number)

: We study the dual problem corresponding to a linear program in which
:.: the stochastic objective function is replaced by its expected utility, and
5 discuss~its relevance as a penalty method to a stochastically constrained
'.‘ dual linear program.

o \

~

\

19

ronm
DD , 5%"5s 1473  coiTion oF 1 nov 6813 omsoLETE
S/N 0102-014- 6601 | Unclassified

SECURITY CLASSIFICATION OF THIS PAGE (When Data Bntered)

. - . - . - * s . - . » T - RS
et e T e et e et e et
T IR N N L. . .-
b R T T PV VA T T R R R

L el e et
.t St v
FRPRRIWRITR Y, W




AT TR T Y ~
v " —— AuBar Sam _hos ang Bad 4
=
) e A o
A A AR
- Sl
s
“J‘;l‘
> . *
X AR
A
Chd e
YTV W
A TE e -
- P e




